Prolactin in Breast Cancer Development, Dietary Methionine in Oncogenesis and More

  • Researchers from Virginia Commonwealth University conducted studies that shed new light on the role of the hormone prolactin. While prolactin has been known for its role in breast development and milk production in pregnancy, this new research established that it also plays an important part in breast cancer development. This finding may lay the foundation for creating new targeted drug therapies to treat breast cancer. The study was published in NPJ Breast Cancer.
  • Two researchers from Germany conducted a study revealing a new understanding of the activation mechanism of a cell growth protein SHP2. The excessive activity of this protein stimulates increased cell proliferation thus triggering cancers such as leukemia. Knowing the mechanism of activation of this protein is crucial for designing therapeutic strategies to inhibit this protein. The study proves wrong the prior understanding of this mechanism. The new insight paves the way for developing new targeted therapies to prevent excessive cell proliferation caused by this protein. The study was published in PNAS.
  • A researcher from the Purdue University found a way to synthesize a compound that can fight a protein involved in multiple cancers, including breast, brain, colorectal, prostate, lung, and liver cancers. The protein, called BRAT1, was previously considered unsuitable as a drug target because of its chemical properties. The compound, Curcusone D, which belongs to a Curcusone family of compounds and originally came from a shrub named Jatropha curca, can now be synthesized in a lab. The compound kills cancer cells and can keep cancer from metastasizing. As Curcusone D compound is very hard to extract from the plant and since it is the only compound that can inhibit BRAT1 protein, synthesizing it in a lab is a very important discovery. Pending some toxicity studies, this compound could be a significant addition to the therapeutics against cancer. This research was reported in the Journal of the American Chemical Society.
  • A group of scientists from Japan conducted a study on how cell proliferation (oncogenesis) and cell death were regulated, focusing on genes p38, JNK, and slpr. Based on the knowledge that dietary nutrients can control p38, the study was done on fruit flies. Researchers manipulated the amount of dietary amino acid methionine and established that decreasing the amount of the methionine in the diet prevented p38-controlled oncogenesis. One of the study findings was that the oncogene slpr could mediate the signaling pathways controlled by other oncogenes. The researchers hope that their findings can be translated to human cancers and help explain how they develop. The study was published in eLIfe.

Pre-metastatic Cancer Stage Intervention, Anti-Cancer Drug Ranking Algorithm, Melanoma Vaccine and More

  • In a new National Cancer Institute study, the researchers interfered with the cancer metastasizing process at the premetastatic stage to prevent metastatic spread and shrink tumors. The scientists used myeloid cells that were known to promote cancer metastasizing by sending a signal from the primary cancer to the other sites in the body where the metastatic spread was going to occur and lowering the immune response. The researchers added a gene to these myeloid cells forcing them to activate and strengthen the immune response. This animal study was published in Cell.
  • Researchers from Rutgers University found that bariatric surgery significantly reduced cancer risk in patients with severe obesity and nonalcoholic fatty liver disease (NAFLD). The risk reduction was especially prominent in obesity-related cancers, such as colorectal, pancreatic, endometrial, and thyroid cancers, as well as hepatocellular carcinoma and multiple myeloma. The study was published in Gastroenterology.
  • An international group of researchers used Artificial Intelligence (AI) for mining “big data” to gain more insight into the development and prognosis of mesothelioma, a cancer caused by exposure to asbestos. The initial exploration revealed that mesothelioma development followed specific trajectories, which could also predict the degree of mesothelioma aggressiveness. The study was published in Nature Communications.
  • Researchers from Queen Mary University of London, UK, have developed a machine-learning algorithm that ranked cancer drugs based on their efficacy. Along the lines of personalized medicine, this will enable oncologists to select the best drugs for treating individual cancer patients. The study was published in Nature Communications.
  • Developments in Biomedical Engineering consistently create new opportunities for personalized medicine. Scientists from Japan created special hydrogel that reprogramed and reverted differentiated cancer cells into cancer stem cells within 24 hours. This innovation may help creating new stem cell targeting drugs and personalized therapies in the future. The study was published in Nature Biomedical Engineering.

The Role of P53 in Radiosensitivity, Cancer in Whales, and More

  • The advent of mining large datasets for cancer data made it possible to discern patterns shared by different cancer types. Therefore, providing an opportunity for applying the approaches proved to be successful in one type of cancer to another type based on the shared characteristics. The method is often used in predicting anti-cancer drug response. Researchers from the University of Michigan Rogel Cancer Center developed a visualization method aimed at improving anti-cancer drug response predictions “by teasing apart and allowing for simultaneous examination of differences across multiple cancer types as well as within individual types”. The method supports an evidence-based approach in making treatment decisions by considering both cancer type and individual variation within that cancer type. This research was published in PLOS Computation Biology.
  • An international team of scientists studied a novel approach to drug discovery, different from the traditional small molecule approach that target only some percentage of proteins active in causing the disease. The new method, aimed at battling the cancer cell drug resistance, “uses a family of human enzymes called ubiquitin ligases that exist in human cells”, which, potentially, can be guided to degrade and kill the disease-causing protein. The study was published in Nature.
  • As cancer radiation therapy efficiency depends on multiple factors, the scientists continue their efforts to understand the biology of tissues sensitivity to radiotherapy. The scientists from the Blavatnik Institute at Harvard Medical School, Massachusetts General Hospital and the Novartis Institutes for BioMedical Research focused their research on the role of a well-known tumor suppressor protein p53. It is long established that p53 is linked to the degree of a tissue’s sensitivity to radiation, but the exact nature of this connection was unknown. This new research found that post radiation exposure, tissues sensitive to radiation show persistent p53 signaling while more resistant tissues show just brief p53 activation. The researchers concluded that it is the dynamics of p53 signaling after radiation that is a factor in the tissues’ radiosensitivity. and not the excess of p53 protein in a tissue. The study was published in Nature Communications.
  • Cancer research is conducted not only in humans but in other species. Cancer research in animals may have potential implications for treating human cancers. In the new study, the international team of scientists focused on whales and the reasons for their low cancer rates. The scientists “used DNA sequencing to create a genetic map of whales’ tumor suppressor genes and those of 15 other mammal species”. This study that contributed to the knowledge of genetic mechanisms of tumor suppression in whales was published in Proceedings of the Royal Society.