Return to Today's science sparks archives

Information Click the tweet icon above each article title to share it on Twitter.

2015-12-31

Fig 1. TRIF-mediated DC maturation by LPS and poly(I:C) use IFN-independent and -dependent pathways, respectively. BMDCs of indicated genotypes were stimulated with LPS (A and B, 100 ng/mL), poly(I:C) (B, 20 µg/mL), or CpG (C, 1 µM) for 12 h and stained for surface expression of CD11c, CD86, CD40, and MHC-II. Histograms show CD11c+ cells expressing different maturation markers. Data are representative of two to five independent experiments.

Fig 1. TRIF-mediated DC maturation by LPS and poly(I:C) use IFN-independent and -dependent pathways, respectively. BMDCs of indicated genotypes were stimulated with LPS (A and B, 100 ng/mL), poly(I:C) (B, 20 µg/mL), or CpG (C, 1 µM) for 12 h and stained for surface expression of CD11c, CD86, CD40, and MHC-II. Histograms show CD11c+ cells expressing different maturation markers. Data are representative of two to five independent experiments.
  • Hu W, Jain A, Gao Y, Dozmorov IM, Mandraju R, Wakeland EK, Pasare C

  • Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13994-9.

2015-12-29

Fig 1. Immunohistochemistry of the TAZ protein in different subtypes of endometrial cancer (× 20)

Fig 1. Immunohistochemistry of the TAZ protein in different subtypes of endometrial cancer (× 20)
  • Romero-Pérez L, Garcia-Sanz P, Mota A, Leskelä S, Hergueta-Redondo M, Díaz-Martín J, López-García MA, Castilla MA, Martínez-Ramírez A, Soslow RA, Matias-Guiu X, Moreno-Bueno G, Palacios J

  • Mod Pathol. 2015 Nov;28(11):1492-503.

2015-12-28

Fig 1. Generation of Spo11-oligo maps.

Fig 1. Generation of Spo11-oligo maps.
  • Lam I, Keeney S

  • Science. 2015 Nov 20;350(6263):932-7.

2015-12-24

Fig 2. Cytoscape visualization of the combined network.

Fig 2. Cytoscape visualization of the combined network.
  • Kar SP, Tyrer JP, Li Q, Lawrenson K, Aben KK, Anton-Culver H, et al.

  • Cancer Epidemiol Biomarkers Prev. 2015 Oct;24(10):1574-84.

2015-12-23

Fig 4. Co-expression of the Gata6 H2B-Venus reporter with endogenous GATA6 during early post-implantation development.

Fig 4. Co-expression of the Gata6 H2B-Venus reporter with endogenous GATA6 during early post-implantation development.
  • Freyer L, Schröter C, Saiz N, Schrode N, Nowotschin S, Martinez-Arias A, Hadjantonakis AK

  • BMC Dev Biol. 2015 Oct 24;15:38.
Open Access button

2015-12-22

Fig 2. Primary study end-point analyses.

Fig 2. Primary study end-point analyses.
  • Kim YH, Tavallaee M, Sundram U, Salva KA, Wood GS, Li S, Rozati S, Nagpal S, Krathen M, Reddy S, Hoppe RT, Nguyen-Lin A, Weng WK, Armstrong R, Pulitzer M, Advani RH, Horwitz SM

  • J Clin Oncol. 2015 Nov 10;33(32):3750-8.

2015-12-21

Fig 4. Hierarchical clustering of BCCLs based on (a) proteomic and (b) transcriptomic quantitative data.

Fig 4. Hierarchical clustering of BCCLs based on (a) proteomic and (b) transcriptomic quantitative data.
  • Cifani P, Kirik U, Waldemarson S, James P

  • J Proteome Res. 2015 Jul 2;14(7):2819-27.

2015-12-18

Fig 4. A 60-year-old man underwent surgical resection followed by stereotactic radiosurgery for an isolated left frontal metastasis secondary to lung adenocarcinoma.

Fig 4. A 60-year-old man underwent surgical resection followed by stereotactic radiosurgery for an isolated left frontal metastasis secondary to lung adenocarcinoma.
  • Lin X, DeAngelis LM

  • J Clin Oncol. 2015 Oct 20;33(30):3475-84.

2015-12-17

Fig 1. PFS for (A) all active treatment (watchful waiting excluded), (B) rituximab plus chemotherapy, and (C) rituximab monotherapy, and OS for (D) all active treatment (watchful waiting excluded), (E) rituximab plus chemotherapy, and (F) rituximab monotherapy, by age group and active first-line treatment.

Fig 1. PFS for (A) all active treatment (watchful waiting excluded), (B) rituximab plus chemotherapy, and (C) rituximab monotherapy, and OS for (D) all active treatment (watchful waiting excluded), (E) rituximab plus chemotherapy, and (F) rituximab monotherapy, by age group and active first-line treatment.
  • Casulo C, Day B, Dawson KL, Zhou X, Flowers CR, Farber CM, Hainsworth JD, Cerhan JR, Link BK, Zelenetz AD, Friedberg JW

  • Ann Oncol. 2015 Nov;26(11):2311-7.
Open Access button

2015-12-16

Fig 1. Structure of [18F]PARPi-FL and schematic for the automated synthesis: a structures of the fluorescent monomodal and 18F-labeled bimodal PARP1 targeted probes and b the synthesis of [18F]PARPi-FL is automated and performed in an 18F synthesis module. The upper panel shows the azeotropic distillation. The middle panel illustrates the fluorination/reaction step, followed by HPLC purification (lower panel).

Fig 1. Structure of [18F]PARPi-FL and schematic for the automated synthesis: a structures of the fluorescent monomodal and 18F-labeled bimodal PARP1 targeted probes and b the synthesis of [18F]PARPi-FL is automated and performed in an 18F synthesis module. The upper panel shows the azeotropic distillation. The middle panel illustrates the fluorination/reaction step, followed by HPLC purification (lower panel).
  • Carlucci G, Carney B, Brand C, Kossatz S, Irwin CP, Carlin SD, Keliher EJ, Weber W, Reiner T

  • Mol Imaging Biol. 2015 Dec;17(6):848-55.

2015-12-15

Fig 1. Immunosuppressive regulators in tumor microenvironment.

Fig 1. Immunosuppressive regulators in tumor microenvironment.
  • Kapadia CH, Perry JL, Tian S, Luft JC, DeSimone JM

  • J Control Release. 2015 Dec 10;219:167-80.

2015-12-14

Fig 2. NVOC-EMP1 is a photoactivatable ligand for TLR4 signaling.

Fig 2. NVOC-EMP1 is a photoactivatable ligand for TLR4 signaling.
  • Nguyen Duc T, Huse M

  • ACS Chem Biol. 2015 Nov 20;10(11):2435-40.

2015-12-11

Fig 1. Exploring Complex Dependencies in Cancer Biology with Mathematical Modeling.

Fig 1. Exploring Complex Dependencies in Cancer Biology with Mathematical Modeling.
  • Michor F, Beal K

  • Cell. 2015 Nov 19;163(5):1059-63.

2015-12-10

Fig 1. Microscopic pictures of a 4-cm EHCC with EVI (7 foci) in a 44-year-old man without distant disease at presentation.

Fig 1. Microscopic pictures of a 4-cm EHCC with EVI (7 foci) in a 44-year-old man without distant disease at presentation.
  • Xu B, Wang L, Tuttle RM, Ganly I, Ghossein R

  • Hum Pathol. 2015 Dec;46(12):1789-98.

2015-12-09

Fig 1. Strategies for Targeting Epigenetic Regulators.

Fig 1. Strategies for Targeting Epigenetic Regulators.
  • Cai SF, Chen CW, Armstrong SA

  • Mol Cell. 2015 Nov 19;60(4):561-70.

2015-12-08

Fig 1. Urinary 3-indoxyl sulfate generation.

Fig 1. Urinary 3-indoxyl sulfate generation.
  • Jenq RR

  • Blood. 2015 Oct 1;126(14):1641-2.

2015-12-07

Fig 2. Representative images of PKM2 expression intensity.

Fig 2. Representative images of PKM2 expression intensity.
  • Lockney NA, Zhang M, Lu Y, Sopha SC, Washington MK, Merchant N, Zhao Z, Shyr Y, Chakravarthy AB, Xia F

  • J Gastrointest Cancer. 2015 Dec;46(4):390-8.

2015-12-04

Fig 2. Nodes within the proteostasis network control the response of myeloma cells to carfilzomib.

Fig 2. Nodes within the proteostasis network control the response of myeloma cells to carfilzomib.
  • Acosta-Alvear D, Cho MY, Wild T, Buchholz TJ, Lerner AG, Simakova O, Hahn J, Korde N, Landgren O, Maric I, Choudhary C, Walter P, Weissman JS, Kampmann M

  • Elife. 2015 Sep 1;4.
Open Access button

2015-12-03

Fig 1. CSF ctDNA better captures the genomic alterations in patients with brain tumours than plasma ctDNA.

Fig 1. CSF ctDNA better captures the genomic alterations in patients with brain tumours than plasma ctDNA.
  • De Mattos-Arruda L, Mayor R, Ng CK, Weigelt B, Martínez-Ricarte F, Torrejon D, Oliveira M, Arias A, Raventos C, Tang J, Guerini-Rocco E, Martínez-Sáez E, Lois S, Marín O, de la Cruz X, Piscuoglio S, Towers R, Vivancos A, Peg V, Cajal SR, Carles J, Rodon J, González-Cao M, Tabernero J, Felip E, Sahuquillo J, Berger MF, Cortes J, Reis-Filho JS, Seoane J

  • Nat Commun. 2015 Nov 10;6:8839.
Open Access button

2015-12-02

Graphical abstract

Graphical abstract
  • Weisholtz DS, Root JC, Butler T, Tüscher O, Epstein J, Pan H, Protopopescu X, Goldstein M, Isenberg N, Brendel G, LeDoux J, Silbersweig DA, Stern E

  • Brain Lang. 2015 Nov 11;151:12-22.

2015-12-01

Fig 1. Kaplan-Meier survival curve for patients with >25 % hepatic tumor burden undergoing either hepatic resection or intra-arterial therapy (IAT) of gastroenteropancreatic neuroendocrine tumor liver metastases. Patients with high-volume, symptomatic disease benefit most from surgical intervention while those with high-volume asymptomatic disease benefit equally from surgical intervention versus intra-arterial theraphy months.

Fig 1. Kaplan-Meier survival curve for patients with >25 % hepatic tumor burden undergoing either hepatic resection or intra-arterial therapy (IAT) of gastroenteropancreatic neuroendocrine tumor liver metastases. Patients with high-volume, symptomatic disease benefit most from surgical intervention while those with high-volume asymptomatic disease benefit equally from surgical intervention versus intra-arterial theraphy months.
  • Grandhi MS, Lafaro KJ, Pawlik TM

  • J Gastrointest Surg. 2015 Dec;19(12):2273-82.

2015-11-30

Fig 1. Scheme of ligase evolution. RNA ligases, DNA ligases, and mRNA capping enzymes comprise a superfamily of covalent nucleotidyltransferases that act via enzyme-(lysyl-Nζ)–NMP intermediates. They are thought to descend from an ancestral ATP-using NTase domain (turquois oval) by fusions to structurally diverse flanking domain modules (depicted in various shapes and colors), as discussed in the text.

Fig 1. Scheme of ligase evolution. RNA ligases, DNA ligases, and mRNA capping enzymes comprise a superfamily of covalent nucleotidyltransferases that act via enzyme-(lysyl-Nζ)–NMP intermediates. They are thought to descend from an ancestral ATP-using NTase domain (turquois oval) by fusions to structurally diverse flanking domain modules (depicted in various shapes and colors), as discussed in the text.
  • Unciuleac MC, Goldgur Y, Shuman S

  • Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13868-73.

2015-11-27

Fig 3. Analysis of clonal architecture of IDH1/2-mutated cases.

Fig 3. Analysis of clonal architecture of IDH1/2-mutated cases.
  • Molenaar RJ, Thota S, Nagata Y, Patel B, Clemente M, Przychodzen B, Hirsh C, Viny AD, Hosano N, Bleeker FE, Meggendorfer M, Alpermann T, Shiraishi Y, Chiba K, Tanaka H, van Noorden CJ, Radivoyevitch T, Carraway HE, Makishima H, Miyano S, Sekeres MA, Ogawa S, Haferlach T, Maciejewski JP

  • Leukemia. 2015 Nov;29(11):2134-42.

2015-11-25

Fig 1. Granulocyte colony-stimulating factor (G-CSF). Structure and therapeutic forms of 1, 2, and designed 3.

Fig 1. Granulocyte colony-stimulating factor (G-CSF). Structure and therapeutic forms of 1, 2, and designed 3.
  • Roberts AG, Johnston EV, Shieh JH, Sondey JP, Hendrickson RC, Moore MA, Danishefsky SJ

  • J Am Chem Soc. 2015 Oct 14;137(40):13167-75.

2015-11-24

Fig 2. Hematoxylin and Eosin, 100× original image, prominent hyperkeratotic basket weave stratum corneum overlies an epidermis overtaken by necrotic keratinocytes at all levels, associated with vacuolar interface alteration and exocytosis of small lymphocytes.

Fig 2. Hematoxylin and Eosin, 100× original image, prominent hyperkeratotic basket weave stratum corneum overlies an epidermis overtaken by necrotic keratinocytes at all levels, associated with vacuolar interface alteration and exocytosis of small lymphocytes.
  • Warren S, Nehal K, Querfeld C, Wong R, Huang J, Pulitzer M

  • J Cutan Pathol. 2015 Oct;42(10):663-8.

2015-11-23

Fig 2. Proposed role of GS in DTs.

Fig 2. Proposed role of GS in DTs.
  • Gounder MM

  • Cancer. 2015 Nov 15;121(22):3933-7.

2015-11-20

Fig 5. Heat map displaying 50 stably expressed genes whose expression levels best differentiate (based on P value) melanoma patients (n = 7) from healthy donors (n = 10).

Fig 5. Heat map displaying 50 stably expressed genes whose expression levels best differentiate (based on P value) melanoma patients (n = 7) from healthy donors (n = 10).
  • Felts SJ, Van Keulen VP, Scheid AD, Allen KS, Bradshaw RK, Jen J, Peikert T, Middha S, Zhang Y, Block MS, Markovic SN, Pease LR

  • Cancer Immunol Immunother. 2015 Nov;64(11):1437-47.

2015-11-19

Fig 6. Id1 deletion results in morphological and vascular functional changes in the colon.

Fig 6. Id1 deletion results in morphological and vascular functional changes in the colon.
  • Zhang N, Subbaramaiah K, Yantiss RK, Zhou XK, Chin Y, Scherl EJ, Bosworth BP, Benezra R, Dannenberg AJ

  • Am J Pathol. 2015 Nov;185(11):2983-93.

2015-11-18

Fig 2. Evaluating metastasis of the ZMEL1 line using transplantation into the transparent casper recipient line.

Fig 2. Evaluating metastasis of the ZMEL1 line using transplantation into the transparent casper recipient line.
  • Heilmann S, Ratnakumar K, Langdon EM, Kansler ER, Kim IS, Campbell NR, Perry EB, McMahon AJ, Kaufman CK, van Rooijen E, Lee W, Iacobuzio-Donahue CA, Hynes RO, Zon LI, Xavier JB, White RM

  • Cancer Res. 2015 Oct 15;75(20):4272-82.

2015-11-17

Fig 3. The costs per QALY gained ($1000) of colonoscopy screening for white females by screening history, comorbidity status, background risk for CRC, and age (3% discounted).

Fig 3. The costs per QALY gained ($1000) of colonoscopy screening for white females by screening history, comorbidity status, background risk for CRC, and age (3% discounted).
  • van Hees F, Saini SD, Lansdorp-Vogelaar I, Vijan S, Meester RG, de Koning HJ, Zauber AG, van Ballegooijen M

  • Gastroenterology. 2015 Nov;149(6):1425-37.

2015-11-16

Fig 3. Representative examples: regression of hypoxia (above, patient#15) vs. increase (week 2) followed by incomplete reduction (week 6) of hypoxia with residual hypoxia remaining (below, patient#16).

Fig 3. Representative examples: regression of hypoxia (above, patient#15) vs. increase (week 2) followed by incomplete reduction (week 6) of hypoxia with residual hypoxia remaining (below, patient#16).
  • Wiedenmann NE, Bucher S, Hentschel M, Mix M, Vach W, Bittner MI, Nestle U, Pfeiffer J, Weber WA, Grosu AL

  • Radiother Oncol. 2015 Oct;117(1):113-7.

2015-11-13

Fig 3. MRI and magnetic resonance spectroscopic imaging of primary prostate cancer.

Fig 3. MRI and magnetic resonance spectroscopic imaging of primary prostate cancer.
  • Wibmer AG, Vargas HA, Hricak H

  • Future Oncol. 2015 Oct;11(20):2757-66.

2015-11-12

Fig 3. Lhx1 function is essential for midline morphogenesis.

Fig 3. Lhx1 function is essential for midline morphogenesis.
  • Costello I, Nowotschin S, Sun X, Mould AW, Hadjantonakis AK, Bikoff EK, Robertson EJ

  • Genes Dev. 2015 Oct 15;29(20):2108-22.
Open Access button

2015-11-11

Fig 2. Structural Basis of H3 Recognition by AF10PZP.

Fig 2. Structural Basis of H3 Recognition by AF10PZP.
  • Chen S, Yang Z, Wilkinson AW, Deshpande AJ, Sidoli S, Krajewski K, Strahl BD, Garcia BA, Armstrong SA, Patel DJ, Gozani O

  • Mol Cell. 2015 Oct 15;60(2):319-27.

2015-11-10

Fig 3. PCA plots of drugs approved between 1981 and 2010 parsed by compound class.

Fig 3. PCA plots of drugs approved between 1981 and 2010 parsed by compound class.
  • Stratton CF, Newman DJ, Tan DS

  • Bioorg Med Chem Lett. 2015 Nov 1;25(21):4802-7.

2015-11-09

Fig 2. Activation of CD8+ T Cells and NK Cells during MCMV Infection.

Fig 2. Activation of CD8+ T Cells and NK Cells during MCMV Infection.
  • O'Sullivan TE, Sun JC, Lanier LL

  • Immunity. 2015 Oct 20;43(4):634-45.

2015-11-06

Fig 4. Interactions between T lymphocytes and HRS cells through the PD1 pathway.

Fig 4. Interactions between T lymphocytes and HRS cells through the PD1 pathway.
  • Stathis A, Younes A

  • Ann Oncol. 2015 Oct;26(10):2026-33.

2015-11-05

Fig 1. IDO-Positive Tumors from Melanoma Patients Show Increased Frequencies of MDSCs.

Fig 1. IDO-Positive Tumors from Melanoma Patients Show Increased Frequencies of MDSCs.
  • Holmgaard RB, Zamarin D, Li Y, Gasmi B, Munn DH, Allison JP, Merghoub T, Wolchok JD

  • Cell Rep. 2015 Oct 13;13(2):412-24.
Open Access button

2015-11-04

Fig 1. Oncologists per 100,000 residents by hospital service area.

Fig 1. Oncologists per 100,000 residents by hospital service area.
  • Lin CC, Bruinooge SS, Kirkwood MK, Olsen C, Jemal A, D Bajorin, Giordano SH, Goldstein M, Guadagnolo BA, Kosty M, Hopkins S, Yu JB, Arnone A, Hanley A, Stevens S, Hershman DL

  • J Clin Oncol. 2015 Oct 1;33(28):3177-3185

2015-11-03

Fig 1. Axial FLAIR images from case 1 (top row, left to right) demonstrate abnormal hyperintense signal in the bilateral thalami, mammillary bodies/hypothalamus, and posterior pons.

Fig 1. Axial FLAIR images from case 1 (top row, left to right) demonstrate abnormal hyperintense signal in the bilateral thalami, mammillary bodies/hypothalamus, and posterior pons.
  • Isenberg-Grzeda E, Hsu AJ, Hatzoglou V, Nelso C, Breitbart W

  • Palliat Support Care. 2015 Oct;13(5):1241-9.

2015-11-02

Fig 4. A, B: Fine-needle aspiration of metastatic pleomorphic sarcoma.

Fig 4. A, B: Fine-needle aspiration of metastatic pleomorphic sarcoma.
  • HooKim K, Gaitor J, Lin O, Reid MD

  • Diagn Cytopathol. 2015 Nov;43(11):904-11.

2015-10-30

Fig 7. Interactions of Vis with M6 and NAD+.

Fig 7. Interactions of Vis with M6 and NAD+.
  • Ravulapalli R, Lugo MR, Pfoh R, Visschedyk D, Poole A, Fieldhouse RJ, Pai EF, Merrill AR

  • Biochemistry. 2015 Sep 29;54(38):5920-36.

2015-10-29

Fig 2. A working model summarizing the pathophysiology of bone marrow fibrosis in primary myelofibrosis.

Fig 2. A working model summarizing the pathophysiology of bone marrow fibrosis in primary myelofibrosis.
  • Nazha A, Khoury JD, Rampal RK, Daver N

  • Oncologist. 2015 Oct;20(10):1154-60.

2015-10-28

Fig 1. The pos-1 Gutless Phenotype Is Suppressed by neg-1 Loss of Function.

Fig 1. The pos-1 Gutless Phenotype Is Suppressed by neg-1 Loss of Function.
  • Elewa A, Shirayama M, Kaymak E, Harrison PF, Powell DR, Du Z, Chute CD, Woolf H, Yi D, Ishidate T, Srinivasan J, Bao Z, Beilharz TH, Ryder SP, Mello CC

  • Dev Cell. 2015 Jul 6;34(1):108-18.

2015-10-27

Fig 2. A 64-year-old female patient with recurrent ovarian cancer.

Fig 2. A 64-year-old female patient with recurrent ovarian cancer.
  • Vargas HA, Burger IA, Goldman DA, Miccò M, Sosa RE, Weber W, Chi DS, Hricak H, Sala E

  • Eur Radiol. 2015 Nov;25(11):3348-53.

2015-10-26

Fig 1. Examples of susceptibility artifacts for common percutaneous devices when placed perpendicular to 1.5-T main magnetic field.

Fig 1. Examples of susceptibility artifacts for common percutaneous devices when placed perpendicular to 1.5-T main magnetic field.
  • Kaye EA, Granlund KL, Morris EA, Maybody M, Solomon SB

  • AJR Am J Roentgenol. 2015 Oct;205(4):W400-1.

2015-10-23

Fig 1. T cell activation and recruitment to tumor cells.

Fig 1. T cell activation and recruitment to tumor cells.
  • Roberts SS, Chou AJ, Cheung NK

  • Front Oncol. 2015 Aug 7;5:181.
Open Access button

2015-10-22

Fig 1. (A) Organoaxial volvulus occurs when the stomach rotates along its long axis, placing the greater curvature anteriorly and the lesser curvature posteriorly. (B) Mesenteroaxial volvulus occurs when the stomach rotates along its short axis placing the antrum anteriorly and superiorly.

Fig 1. (A) Organoaxial volvulus occurs when the stomach rotates along its long axis, placing the greater curvature anteriorly and the lesser curvature posteriorly. (B) Mesenteroaxial volvulus occurs when the stomach rotates along its short axis placing the antrum anteriorly and superiorly.
  • Farber BA, Lim IIP, Murphy JM, Price AP, Abramson SJ, La Quaglia MP

  • J Ped Surg Case Reports. 2015; 3: 447-450.
Open Access button

2015-10-21

Fig 4. DNAppG primer extension by mammalian polymerase β.

Fig 4. DNAppG primer extension by mammalian polymerase β.
  • Chauleau M, Das U, Shuman, S

  • Nucl. Acids Res. 2015 March 31; 43(6): 3197-3207.
Open Access button

2015-10-20

Fig 1. PTPRD mutations are common in HNSCC and other cancers.

Fig 1. PTPRD mutations are common in HNSCC and other cancers.
  • Peyser ND, Du Y, Li H, Lui V, Xiao X, Chan TA, Grandis JR

  • PLoS One. 2015 Aug 12;10(8):e0135750.
Open Access button

2015-10-19

Fig 2. AID Contributes to Epigenetic Diversity within GCB.

Fig 2. AID Contributes to Epigenetic Diversity within GCB.
  • Dominguez PM, Teater M, Chambwe N, Kormaksson M, Redmond D, Ishii J, Vuong B, Chaudhuri J, Melnick A, Vasanthakumar A, Godley LA, Papavasiliou FN, Elemento O, Shaknovich R

  • Cell Rep. 2015 Sep 29;12(12):2086-98.
Open Access button

2015-10-16

Fig 1. The role of FANCM and partner proteins in coping with template lesions during DNA replication.

Fig 1. The role of FANCM and partner proteins in coping with template lesions during DNA replication.
  • Xue X, Sung P, Zhao X

  • Genes Dev. 2015 Sep 1;29(17):1777-88.

2015-10-15

Fig 1. Near-infrared fluorescence hyperspectral microscope.

Fig 1. Near-infrared fluorescence hyperspectral microscope.
  • Roxbury D, Jena PV, Williams RM, Enyedi B, Niethammer P, Marcet S, Verhaegen M, Blais-Ouellette S, Heller DA

  • Sci Rep. 2015 Sept 21: 1-6.
Open Access button

2015-10-14

Figure 3. Docked complexes of 7 and MOR (A); 7 and DOR (B).

Figure 3. Docked complexes of 7 and MOR (A); 7 and DOR (B).
  • Váradi A, Palmer TC, Haselton N, Afonin D, Subrath JJ, Le Rouzic V, Hunkele A, Pasternak GW, Marrone GF, Borics A, Majumdar S

  • ACS Chem Neurosci. 2015 Sep 16;6(9):1570-7.

2015-10-13

Fig 2. Example of changes in spleen volume after 6 months of chemotherapy.

Fig 2. Example of changes in spleen volume after 6 months of chemotherapy.
  • Joiner BJ, Simpson AL, Leal JN, D'Angelica MI, Do RK

  • Abdom Imaging. 2015 Oct;40(7):2338-44.

2015-10-12

Fig 2. Apoptotic membrane blebbing through the DR5/Casp-3/ROCK1 signaling pathway.

Fig 2. Apoptotic membrane blebbing through the DR5/Casp-3/ROCK1 signaling pathway.
  • Forero-Torres A, Varley KE, Abramson VG, Li Y, Vaklavas C, Lin NU, Liu MC, Rugo HS, Nanda R, Storniolo AM, Traina TA, Patil S, Van Poznak CH, Nangia JR, Irvin WJ Jr, Krontiras H, De Los Santos JF, Haluska P, Grizzle W, Myers RM, Wolff AC; Translational Breast Cancer Research Consortium (TBCRC).

  • Clin Cancer Res. 2015 Jun 15;21(12):2722-9.

2015-10-09

Fig 1. An H&E stained section of mucosal rolls procured using our “rolling technique” showing a well preserved mucosa layer delineated by the muscularis mucosae at its base.

Fig 1. An H&E stained section of mucosal rolls procured using our “rolling technique” showing a well preserved mucosa layer delineated by the muscularis mucosae at its base.
  • Shia J, Stadler ZK, Weiser MR, Vakiani E, Mendelsohn R, Markowitz AJ, Shike M, Boland CR, Klimstra DS

  • Fam Cancer. 2015 Mar;14(1):61-8.

2015-10-08

Fig 1. Nomogram.

Fig 1. Nomogram.
  • Groot Koerkamp B, Wiggers JK, Gonen M, Doussot A, Allen PJ, Besselink MG, Blumgart LH, Busch OR, D'Angelica MI, DeMatteo RP, Gouma DJ, Kingham TP, van Gulik TM, Jarnagin WR

  • Ann Oncol. 2015 Sep;26(9):1930-5

2015-10-07

Fig 2. Mutations detected by targeted sequencing and shared by at least 30% of DMs. The columns denote the samples (according to Table 1), the rows refer to the genes, and the green squares indicate mutations.

Fig 2. Mutations detected by targeted sequencing and shared by at least 30% of DMs. The columns denote the samples (according to Table 1), the rows refer to the genes, and the green squares indicate mutations.
  • Wiesner T, Kiuru M, Scott SN, Arcila M, Halpern AC, Hollmann T, Berger MF, Busam KJ

  • Am J Surg Pathol. 2015 Oct;39(10):1357-62.

2015-10-06

Fig 1. Experimental approach.

Fig 1. Experimental approach.
  • Rodić N, Steranka JP, Makohon-Moore A, Moyer A, Shen P, Sharma R, Kohutek ZA, Huang CR, Ahn D, Mita P, Taylor MS, Barker NJ, Hruban RH, Iacobuzio-Donahue CA, Boeke JD, Burns KH

  • Nat Med. 2015 Sep;21(9):1060-4.

2015-10-05

Fig 2. GCN2 phosphorylates eIF2α during mitochondrial dysfunction.

Fig 2. GCN2 phosphorylates eIF2α during mitochondrial dysfunction.
  • Schulz AM, Haynes CM

  • Biochim Biophys Acta. 2015 Nov;1847(11):1448-56.

2015-10-02

Fig 1. PARP1 immunofluorescence staining of brain, U251 MG xenografts, and U87 MG xenografts.

Fig 1. PARP1 immunofluorescence staining of brain, U251 MG xenografts, and U87 MG xenografts.
  • Salinas B, Irwin CP, Kossatz S, Bolaender A, Chiosis G, Pillarsetty N, Weber WA, Reiner T

  • EJNMMI Res. 2015 Dec;5(1):123.
Open Access button

2015-10-01

Fig 1. Recurrent CDKN1B mutations in classical HCL.

Fig 1. Recurrent CDKN1B mutations in classical HCL.
  • Dietrich S, Hüllein J, Lee SC, Hutter B, Gonzalez D, Jayne S, Dyer MJ, Oleś M, Else M, Liu X, Słabicki M, Wu B, Troussard X, Dürig J, Andrulis M, Dearden C, von Kalle C, Granzow M, Jauch A, Fröhling S, Huber W, Meggendorfer M, Haferlach T, Ho AD, Richter D, Brors B, Glimm H, Matutes E, Abdel Wahab O, Zenz T

  • Blood. 2015 Aug 20;126(8):1005-8.